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ABSTRACT
Graph convolutional networks (GCNs), aiming to obtain node
embeddings by integrating high-order neighborhood information
through stacked graph convolution layers, have demonstrated great
power in many network analysis tasks such as node classification
and link prediction. However, a fundamental weakness of GCNs,
that is, topological limitations, including over-smoothing and local
homophily of topology, limits their ability to represent networks.
Existing studies for solving these topological limitations typically
focus only on the convolution of features on network topology,
which inevitably relies heavily on network structures. Moreover,
most networks are text-rich, so it is important to integrate not only
document-level information, but also the local text information
which is particularly significant while often ignored by the existing
methods. To solve these limitations, we propose BiTe-GCN, a novel
GCN architecture modeling via bidirectional convolution of topol-
ogy and features on text-rich networks. Specifically, we first trans-
form the original text-rich network into an augmented bi-typed
heterogeneous network, capturing both the global document-level
information and the local text-sequence information from texts. We
then introduce discriminative convolution mechanisms, which per-
forms convolution on this augmented bi-typed network, realizing
the convolutions of topology and features altogether in the same
system, and learning different contributions of these two parts (i.e.,
network part and text part), automatically for the given learning
objectives. Extensive experiments on text-rich networks demon-
strate that our new architecture outperforms the state-of-the-arts
by a breakout improvement. Moreover, this architecture can also be
applied to several e-commerce search scenes such as JD searching,
and experiments on JD dataset show the superiority of the proposed
architecture over the baseline methods.

CCS CONCEPTS
• Information systems→ Social networks; •Computingmethod-
ologies → Neural networks; Structured outputs.
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1 INTRODUCTION
Real-world systems can often be modeled as networks, including
social networks, biological networks and information networks.
Network analysis has been an active research topic for decades
both in academia and industry. Recently, research on analyzing
networks with deep learning has received widespread attention. In
particular, graph convolutional networks (GCNs) [8], which obtain
node embeddings through the propagation and aggregation of the
features on network topology, have achieved great success and been
widely applied in natural language processing [9, 12, 37], traffic
forecasting [1, 40] and recommendation systems [15, 32].

While the success of GCNs and their variants [16, 29, 39], a key
issue with them is the topological limitations. Take an extreme
example, let the number of layers of GCNs be very large, then from
the level of methodology, the node features only serve as an initial
solution of embeddings, and continuously smooth it based on the
topology using the propagation and aggregation mechanisms, mak-
ing GCNs almost entirely depend on network topology. Specifically,
we may get 𝑘 different embeddings from GCNs if there are 𝑘 con-
nected components of the network. Especially, when there is only
one component of the network (i.e., network is fully connected), all
node embeddings may converge to similar values, which is a severe
oversmoothing phenomenon. Considering this, GCNs only obtain
satisfactory embeddings from a good local mixing state of propaga-
tion by limiting the number of propagation to two or three layers.
However, this will further make GCNs rely heavily on the local
homophily of topology, that is, neighborhoods should be similar, a
very strong assumption in many real-world text-rich networks.

There are also some different attempts proposed to design algo-
rithms and models to handle the topological limitations of GCNs.
For example, several studies adopt the idea of topology optimiza-
tion, which refine the network topology by introducing additional
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schemes such as normalization [41] and markov random fields [7].
Another line of attempts is the self-supervision based methods,
which utilize several highly credible labels derived from GCNs to
optimize the topological channels in the following propagation of
GCNs [10, 24, 34]. The third attempt is the skip connection based
methods that adaptively select the appropriate neighborhoods for
each node from the perspective of jumping knowledge [2, 33]. In
addition, there are also some other attempts that can be considered
to solve the topological limitations of GCNs, such as attention-
based methods [13, 26], which leverage the attention mechanisms
to allocate appropriate weights to different neighborhoods, so as to
refine the network topology.

These existing methods have achieved reasonable results at han-
dling the topological limitations of GCNs and thus improved the
performance of GCNs. But they still focus only on the convolution
of features on network topology. However, from the level of model
architectures, an ideal way may be that the convolutions of features
(on topology) and topology (on features) play together in the same
system. The model should also learn correctly the contribution of
each part, that is, topology or text, automatically, for given learning
objectives.

Besides, since most real networks are text-rich, it is also impor-
tant to incorporate not only the global document-level information,
but also the local text information that reflects the semantics ex-
pressed in natural language, which is particularly significant while
often ignored by existing methods.

To solve these above problems, in this paper we propose a novel
GCN architecture, i.e., BiTe-GCN, on text-rich networks. It consists
of two main parts, data modeling and discriminative convolution.
To be specific, we first augment the original text-rich network into
a bi-typed network, as shown in the top-middle part of Fig. 1. It
includes two types of nodes, namely the real nodes (e.g., document
nodes in the original network) and entity nodes (e.g., phrases or
words extracted from text sequences); and three types of edges,
that is, edges between real nodes such as paper citations, edges
between real nodes and entity nodes which reflect their inclusion
relationships, as well as edges between entity nodes which reflect
the semantic structure information in text sequences. We then
introduce a discriminative joint convolution mechanism, based on
the concept of meta-path, which can distinguish and learn out the
contributions of network part and text part based on the learning
objectives. In addition, as the augmented network constructed in
data modeling contains both global document-level information
and local text information, this architecture itself can incorporate
more semantics and knowledge from texts.

The rest of the paper is organized as follows. Section 2 gives the
problem definitions and introduces GCN. Section 3 proposes the
new GCN architecture on text-rich networks. Section 4 shows the
extensive experiment details and the algorithms we compared. In
Section 5 we discuss and analyze the experiment results. To extend
our method to more fields, Section 6 introduces the application on
e-commerce search. Finally, we discuss related work in Section 7
and conclude in Section 8.

2 PRELIMINARIES
We first introduce the problem definition, and then discuss GCN
which serves as the base of our new architecture.

2.1 Problem Definition
The notations used in this paper are summarized in Table 1.

Definition 1.Text-richNetwork. Consider a network𝐺 = (𝑉 , 𝐸),
where 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} is the set of 𝑛 nodes and 𝐸 = {𝑒𝑖 𝑗 } ⊆
𝑉 ×𝑉 the set of𝑚 edges. The topological structure of network𝐺 can
be represented by an 𝑛 × 𝑛 adjacency matrix 𝐴 = (𝑎𝑖 𝑗 )𝑛×𝑛 , where
𝑎𝑖 𝑗 = 1 if there is an edge between nodes 𝑖 and 𝑗 , or 0 otherwise.
Specifically, we call such a network text-rich network if a portion
of its nodes is associated with textual information that collectively
forms a corpus D.

Existing methods (e.g., GCN and GAT) rely heavily on the topol-
ogy of networks, while placing little emphasis on original texts that
endorse high quality information in the network. To make better
use of the original texts, we extend the notion of semi-supervised
node classification to encompass real-world text-rich networks such
as citation networks.

Definition 2. Semi-supervised Node Classification on Text-
Rich network. Given a text-rich network 𝐺 = (𝑉 , 𝐸), a corpus D
and a labeled node set 𝑉𝐿 containing 𝑢 ≪ |𝑉 | nodes, where each
node 𝑣𝑖 ∈ 𝑉𝐿 is associated with a label 𝑦𝑖 ∈ 𝑌 , the objective is to
predict labels of 𝑉 \𝑉𝐿 . Note that each node 𝑣𝑖 ∈ 𝑉 corresponds to
a document 𝑑𝑖 ∈ D.

Table 1: The notations used in this paper.

Notations Descriptions
𝑉 , 𝐸 The sets of nodes and edges
𝐴,𝑋 Adjacencymatrix and node featurematrix
𝐺𝑊 = (𝑉𝑊 , 𝐸𝑊 ) Word network
𝐺𝐷 = (𝑉𝐷 , 𝐸𝐷 ) Document network
𝐺𝑊 = (𝑉𝑊 ′, 𝐸𝑊 ′) Word network with refined edges
𝐺𝐷′ = (𝑉𝐷′,𝑉𝑊 ′) Document network with refined edges
D = {𝑑1, 𝑑2 ...𝑑 |𝑉𝐷 |} The corpus containing documents repre-

sented by each document node 𝑣𝑖 ∈ 𝑉𝐷
T = {𝐷,𝑊 , 𝐷𝑊 } Class of sub-network types
𝑍 Readout result for GCN layers
𝐻 𝑙
𝑥 Intermediate feature produced by GCN

layer for type 𝑥 at level 𝑙
Y𝐷 The set of documents that have labels

2.2 Graph Convolutional Network
Graph Convolutional Network (GCN) [8], originally developed by
Kipf and Welling, is a variant of multi-layer convolutional neural
networks that operates directly on networks. It learns embeddings
of each node by iteratively aggregating the information from its
neighborhoods. Mathematically, given a network 𝐺 = (𝑉 , 𝐸), let
𝑋 ∈ 𝑅𝑛×𝑑 be the node feature matrix, where 𝑛 = |𝑉 | denotes the
number of nodes and 𝑑 the dimension of features. Let 𝐴 ∈ 𝑅𝑛×𝑛

be the adjacency matrix of the network and 𝐷 the corresponding
node degree matrix with 𝐷𝑖𝑖 =

∑
𝑗 𝐴𝑖 𝑗 . Assume that every node is

connected to itself, i.e., �̃� = 𝐴 + 𝐼 (where 𝐼 is the identity matrix).
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Figure 1: Overview of our BiTe-GCN framework. It contains three major parts, bi-typed network construction, joint convolu-
tion, as well as data and model refinements.

Then, by introducing an effective renormalization trick, that is,
𝐴 = �̃�− 1

2 �̃��̃�− 1
2 (where �̃�𝑖𝑖 =

∑
𝑗 �̃�𝑖 𝑗 ), the classic two-layer GCN

can be defined as:
𝑍 = 𝑓 (𝑋,𝐴) = softmax(�̃� ReLU(�̃�𝑋𝑊 (0) )𝑊 (1) ) (1)

where𝑊 (0) (and𝑊 (1) ) is the weight parameter, ReLU (and soft-
max) the non-linear activation function, and 𝑍 the final output for
the assignment of node labels. While GCN works well on several
networks analysis tasks such as node classification [6, 31], it still
has a fundamental weakness, that is, topological limitations, includ-
ing over-smoothing and local homophily of topology, which lead
to the main contribution in this work: joint convolution in both
network structure and features.

3 THE BITE-GCN FRAMEWORK
3.1 Overview
Previous GCN-based methods only perform convolution within the
view of network structure. However, due to the limitations of GCN
architecture, the network structure may contain noisy information
that prevents the model from learning real knowledge from the
network. However, text-rich networks contain significant amount
of text information which can guide the convolution process. To
leverage the feature-space convolution (i.e., convolution within the
corpus), we decompose text-rich networks into bi-typed networks
to explicitly perform joint convolution in both node space and
feature space. This decomposition introduces a set of word nodes
which are compatible with data refinement in semantic meanings.

The BiTe-GCN framework consists of three major components,
namely bi-typed network construction, joint convolution, and data-
model refinements. This section will first describe how to construct
the bi-typed network based on the text-rich network and then
illustrate the detailed convolution technique in themodel and finally
investigate the refinement methods we adopted in our framework
design.

3.2 Bi-typed Network Construction
As mentioned above, the traditional GCN framework is not suitable
for text-rich joint convolution. To best utilize the text-rich informa-
tion, in this work, we first construct a bi-typed network 𝐺 based
on the given text-rich network𝐺𝐷 = (𝑉𝐷 , 𝐸𝐷 ). This bi-typed net-
work structure embeds the semantic information and the structure
is explainable which is compatible with further data and model
refinements. This process can be split into two parts, namely word
network construction and whole network completion.

3.2.1 Word Network Construction. In text-rich network, each node
𝑣𝑖 in the network 𝐺𝐷 is associated with a feature corpus denoted
as 𝑑𝑖 , usually a document describing this node. To best benefit
from the corpus, we convert all documents within this corpus as
a word sub-network 𝐺𝑊 = (𝑉𝑊 , 𝐸𝑊 ) where 𝑉𝑊 is the collection
of all representative words or phrases extracted from the corpus
D. 𝐸𝑊 is the edges connecting word pairs (𝑤1,𝑤2) chosen from
𝑉𝑊 . The word edges are constructed based on the partial word
sharing between different phrases. For example, “text_mining” and
“data_mining” are connected since they share the word “mining”.

3.2.2 Whole Network Completion. After the construction of word
sub-network, the whole bi-typed network𝐺 is completed by adding
edges between document nodes𝑉𝐷 and word nodes𝑉𝑊 . A straight-
forward approach is applying the “inclusion” relationship between
a document and a word to create edges. We denote the network
added above as:

𝐺𝐷𝑊 = (𝑉𝐷 ∪𝑉𝑊 , 𝐸𝐷𝑊 )

where
𝐸𝐷𝑊 = {(𝑑,𝑤) |𝑤 ∈ 𝑑,∀𝑤 ∈ 𝑉𝑊 ,∀𝑑 ∈ 𝑉𝐷 }

Then the whole network is the union of the networks mentioned
above:

𝐺 = 𝐺𝐷 ∪𝐺𝐷𝑊 ∪𝐺𝑊 = (𝑉𝐷 ∪𝑉𝑊 , 𝐸𝐷 ∪ 𝐸𝐷𝑊 ∪ 𝐸𝑊 )
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3.3 Data Refinement
One underlying assumption of GCN based methods is the local
homophily of sub-networks. However, this assumption does not
apply directly to our case, since edges in both sub-networks (𝐺𝐷

and 𝐺𝑊 ) suffer from several limitations. Edges in 𝐺𝐷 are often
based on citations, which does not reflect the semantic similarity
between documents. As a result, edges may exist among semanti-
cally dissimilar objects, while missing among semantically similar
objects. Edges in 𝐺𝑊 are based on inclusion relationship among
phrases extracted from C, which also does not have strong semantic
implications, and thus suffer from similarity limitations.

To enhance the semantic feasibility of edges, we perform edge
refinement separately on both sub-networks.

3.3.1 Document Network Refinement. The edges in document net-
work are citation in the scientific papers. However, due to the
limitation of the author(s)’ knowledge, the citation structure may
introduce irrelevant or missing edges. The goal of edge refinement
is to trim out edges linking semantically distant objects, while
adding edges to link semantically close objects. To achieve this, we
first need a notion of similarity. For the document network, we use
cosine similarity between BERT embedding of documents.

The specific procedure is as follows: we first calculate an embed-
ding for each document with a pre-trained BERT model, and then
calculate the pairwise similarities between documents. Document
pairs with similarity higher than the upper threshold 𝑇𝐷,ℎ𝑖𝑔ℎ is
added as new edges, and existing edges with similarity less than a
lower threshold 𝑇𝐷,𝑙𝑜𝑤 is trimmed off.

3.3.2 Word Network Refinement. The initial criteria for finding
the edges in the word network is to share partial words1. e.g.,
“text_mining” and “data_mining” are connected since they share
the word “mining”. However, chances are that in some cases sharing
words do not guaranteed to have correlation in semantic views. For
example, for the links between phrases, we use word embedding
similarities for the refinements, that is, we remove noise links such
as links between “artificial intelligence” and “artificial life” with
very low semantic similarities, and add missing links such as links
between “LSTM” and “RNN” with very high semantic similarities.
To achieve this, we adopt embedding trained on the whole corpus
D to guide the network structure construction, i.e., word network
refinement. Here we’ve used two different embedding methods us-
ing both Euclidean space (word2vec [18]) and Spherical space (JoSE
[17]) to capture the semantic meaning of words. The refinement
procedure for the word network is similar to that of the document
network, and here we have also two parameters, namely 𝑇𝑊,ℎ𝑖𝑔ℎ

and 𝑇𝑊,𝑙𝑜𝑤 to control the refinement.

3.4 Joint Convolution
Different from the previous work that performs message passing
in a bi-typed network, we perform joint convolution for both docu-
ment nodes and word nodes at the same time. A BiTe-GCN layer
consists of two-level message passing operations:

1The words here refers to phrases extracted from the corpus D. Automated Phrase
extraction tools such as AutoPhrase[23] is adopted here. And the phrase version of
the word network can better capture the semantic meaning and the relation between
phrases.

(1) GCN within each type of sub-network. This is the basic level
for our joint convolution, in each sub-network, we perform
original GCN convolution to allow message passing within
the same type of sub-network.

𝐻
(𝑙+1)
𝑡 = 𝐺𝐶𝑁𝑡 (𝐻 (𝑙) ),∀𝑡 ∈ T (2)

In our setting at each layer, there are three different 𝐻 ′
𝑡 𝑠

generated where 𝑡 ∈ {𝐷,𝑊 , 𝐷𝑊 }.
(2) Aggregation among different types of sub-networks. After

we got the message 𝐻𝑡 for each type of sub-network, we
adopt an aggregation function 𝐴𝐺𝐺 to merge the message
from different types of sub-networks. We would introduce
the 𝐴𝐺𝐺 further in Section 3.5.

𝐻 (𝑙+1) = 𝐴𝐺𝐺

(
𝐻

(𝑙+1)
𝑡 ,∀𝑡 ∈ T

)
(3)

A complete form of two-layer BiTe-GCN model can be expressed
in the following as:

𝑍 = 𝐴𝐺𝐺2 (𝐺𝐶𝑁2𝑡 (𝐴𝐺𝐺1 (𝐺𝐶𝑁1𝑡 (𝑋 ),∀𝑡 ∈ T )),∀𝑡 ∈ T )
where 𝑋 is the original features for all nodes in 𝐺 . Then follow the
heuristic loss definition as introduced in GCN or GAT, we define
the loss function by using cross entropy as:

L = −
∑︁

𝑑∈Y𝐷

𝐹∑︁
𝑓 =1

𝑌𝑑𝑓 ln𝑍𝑑𝑓 (4)

where Y𝐷 is the set of document indices that have labels, 𝑌 the
label indicator matrix, and 𝐹 the dimension of the output features,
which is equal to the number of categories.

3.5 Model Refinement
As introduced in Section 3.4, an aggregation function 𝐴𝐺𝐺 is ap-
plied at the stage of merging messages passed from different types
of sub-networks. For a document node 𝑑 , it receives messages 𝐻𝐷

from GCN module in document sub-network 𝐺𝐷 and 𝐻𝑊 from
GCN module in word sub-network 𝐺𝑊 . Naive readout functions
such as MEAN and CONCAT suffer from not capturing the relation
between different sources of the messages. To best utilize the infor-
mation from different sources of the messages and learn the relation
and the interaction between them, we adopt a multi-head atten-
tion layer to learn how the messages from document sub-network
and word sub-network are used in the final task. For a single-head
attention module, it takes both 𝐻𝐷𝑑 from document sub-network
and 𝐻𝑊𝑑 from word sub-network. Then a non-linear function 𝜌 is
applied to the concatenation of the two messages to represent the
attention for the two messages.

ad = 𝜌 (𝐻𝐷𝑑 ∥𝐻𝑊𝑑 ) (5)
Then the final single-head representation for document node 𝑑 is
calculated by:

𝐻𝑑,𝑠𝑖𝑛𝑔𝑙𝑒 = ad

[
𝐻𝐷𝑑

𝐻𝑊𝑑

]
(6)

Following the multi-head attention’s intuition, the final representa-
tion for document node 𝑑 can then be calculated by concatenating
the outputs of all attention heads:

𝐻𝑑 =

��������𝐻𝑑,𝑠𝑖𝑛𝑔𝑙𝑒 (7)
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3.6 The Generality of the Framework
The classical GCNmodel [8] belongs to transductive learning which
limits its scalability. In network representation, different from trans-
ductive learning’s matrix-by-matrix working mechanism, the in-
ductive learning (such as GraghSage [4] and GAT [26]) applies
node-by-node working mechanism, making it generalizable to the
unseen nodes. To distinguish these two different learning styles,
we give the following formalization. We use 𝑉 ′

𝐷
, 𝑉 ′

𝑊
, 𝐺 ′

𝐷
, 𝐺 ′

𝑊
and

𝐺 ′
𝐷𝑊

to denote the document nodes, word nodes, document sub-
network, word sub-network and document-word sub-network in
the testing network 𝐺 ′. Then 𝐺 ′ can be formalized as:

𝐺 ′ = 𝐺 ′
𝐷 ∪𝐺 ′

𝐷𝑊 ∪𝐺 ′
𝑊 and 𝐺 ′

𝐷𝑊 = (𝑉 ′
𝐷 ∪𝑉 ′

𝑊 , 𝐸 ′𝐷𝑊 )

where

𝐸 ′𝐷𝑊 = {(𝑑 ′,𝑤 ′) |𝑤 ′ ∈ 𝑑 ′,∀𝑤 ′ ∈ 𝑉 ′
𝑊 ,∀𝑑 ′ ∈ 𝑉 ′

𝐷 }

The BiTe-GCN framework is compatible with the transductive
learning and inductive learning, so we develop both versions for it.
In the inductive learning version, the node-by-node convolution
calculation order needs to be specifically designed.

4 EXPERIMENT SETTING
In this section, we conduct extensive experiments to evaluate the ef-
fectiveness of our proposed method BiTe-GCN compared to several
state-of-the-arts on four text-rich networks.

4.1 Datasets
We examine our BiTe-GCN on four text-rich citation networks.
Table 2 shows the statistics for these datasets.

(1) Cora-Enrich2: Cora dataset contains 2,708 scientific pub-
lications in machine learning, connected by 5,429 citation
links. Each paper is manually labeled as one of seven cat-
egories: “Case Based”, “Genetic Algorithms”, “Neural Net-
works”, “Probabilistic Methods”, “Reinforcement Learning”,
“Rule Learning”, and “Theory”. This dataset shares the same
citation information with the standard cora dataset while
contains whole corpus instead of feature vectors [3].

(2) DBLP-Five3 : This is a sub-collection of the original DBLP
datasets containing 6,936 scientific papers in five sub-area
in computer science: “High-Performance Computing”, “Soft-
ware engineering”, “Computer networks”, “Theoretical com-
puter science”, and “Computer graphics: Multimedia”. These
papers are connected by 12,353 links.

(3) Hep-Small3 andHep-Large3: Two text-rich citation datasets
about scientific papers in physics. Hep-Small contains 397
scientific papers in three categories: “Nucl.Phys.Proc.Suppl”,
“Phys.Rev.Lett”, and “Commun.Math.Phys”, connected by
812 links. Hep-Large contains 11,752 documents in four cat-
egories: “Phys.Rev”, “Phys.Lett”, “Nucl.Phys”, and “JHEP”,
connected by 134,956 links.

4.2 Compared Algorithms
We compare our methods and its variants with four state-of-the-art
methods, introduced as follows:

2http://zhang18f.myweb.cs.uwindsor.ca/datasets/
3https://www.cs.cornell.edu/projects/kddcup/datasets.html.

Table 2: Dataset Statistics. |N | and |E | are the number of
nodes and edges in the citation network. |C| is the the num-
ber of categories.

Datasets |N | |E | |C|
Cora-Enrich 2,708 5,429 7
DBLP-Five 6,936 12,353 5
Hep-Small 397 812 3
Hep-Large 11,752 134,956 4

• GCN [8]: It is a classical graph convolution network model
and the main baseline of our BiTe-GCN. Specifically, the
features here are extracted directly from corpus D.

• GAT [26]: Based on GCNmodel, it introduces the node-level
multi-head attention mechanisms to specify the weights
from different neighborhoods.

• DGI [27]: It is an unsupervised graph neural network model
which derives node embeddings by maximizing mutual in-
formation between patch representations and corresponding
high-level summaries of graphs.

• Geom-GCN [21]: It is a semi-supervised graph neural net-
work model that obtains node embeddings by adopting a
bi-level aggregator operating on the structural neighbors.

• BiTe-GCN-Base: The basic model of BiTe-GCN, (i.e., with-
out any refinement).

• BiTe-GCN-Refine: BiTe-GCN of adding data refinement.
• BiTe-GCN-Attention: BiTe-GCN of adding model refine-
ment (attention).

• BiTe-GCN-Refine-Attention:BiTe-GCN of adding both data
refinement and model refinement (attention).

4.3 Hyper-Parameter and Evaluation
For all GCN based methods, a two-layer architecture is used to
avoid oversmoothing and achieve better performance. For data
refinement, 𝑇𝐷,ℎ𝑖𝑔ℎ and 𝑇𝑊,ℎ𝑖𝑔ℎ are set to 0.95 to include only the
high quality and correlated node pairs into the refined network,
𝑇𝐷,𝑙𝑜𝑤 and 𝑇𝑊,𝑙𝑜𝑤 are set to 0.5 to filter out unrelated node pairs.
For attention-based methods, the number of heads is set to 4 for fair
comparisons. All other parameters for baselines methods are set to
their default values.We evaluate all models using node classification
accuracy.

5 EXPERIMENTS RESULTS AND ABLATION
STUDY

Table 3 shows the overall results on the node classification task
performed on the datasets mentioned above.

5.1 Comparisons to Existing Methods
As shown in Table 3, our model BiTe-GCN outperforms the basic
GCN by a large margin, which demonstrates the superiority of
our new bidirectional convolution mechanisms of topology and
features. It also performsmuch better than the other state-of-the-art
GCN methods, which further validate the effectiveness of our new
architecture. Note that as illustrated in the model design part, our
approach is almost orthogonal to many existing GCNmodels which
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Table 3: Overall results (Accuracy) on four mentioned datasets.

Methods Cora-Enrich DBLP-Five Hep-small Hep-large

GCN 0.8815 0.9177 0.4872 0.5243
GAT 0.8852 0.9365 0.4915 0.5270
DGI 0.8918 0.8564 0.5108 —

GeomGCN 0.8926 0.9307 0.4872 0.5047

BiTe-GCN-B 0.9000 0.9336 0.5359 0.5277
BiTe-GCN-R 0.9148 0.9466 0.5897 0.5345
BiTe-GCN-A 0.9222 0.9380 0.5385 0.5260
BiTe-GCN-R-A 0.9370 0.9524 0.6667 0.5489

can incorporate our strategy easily to further improve performance.
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Figure 2: The convolution process in BiTe-GCN for a real
e-commerce network. The target nodes are query node #1
and item node #3, so we orderly update #1’s neighbor nodes
(product node #a and attribute node #d), #3’s neighbor nodes
(product node #a and attribute node #e), and finally #1 and
#3 themselves.

5.2 Refinement and Attention
To further clarify our claimed contribution, we compare BiTe-GCN
with several variations as stated in Section 4.2. We claim that the
data refinement together with the model refinement make a great
contribution on boosting the performance.

5.2.1 Data Refinement. Compare our BiTe-GCN-B’s result with
original GCN, our proposed bi-typed convolution architecture can
capture the semantic meanings embedded in the network struc-
ture. Then adding refinement can further increase the performance
of BiTe-GCN-B. The result comparison between BiTe-GCN-B and
BiTe-GCN-R shows that the semantic (data) refinement can benefit
the base BiTe-GCN model.

5.2.2 Model Refinement (Attention). The model refinement (at-
tention) introduces another performance boost. In Table 3, the
comparison of two model pairs (BiTe-GCN-B, BiTe-GCN-A) and
(BiTe-GCN-R, BiTe-GCN-R-A) shows the power of this attention
refinement. It performs as effective as data semantic refinement
because the attention mechanism can capture the information on
how the message from different types of the network is utilized.
However, in DBLP and Hep datasets, the attention itself cannot
bring significant performance boost compared with data refine-
ment. This is because data refinement can capture more semantic
meaning in the original text-rich network; however, attention only
enhances the original network structure information, which itself
is not enough to solve the problem independently. After the data
refinement, the model is able to capture more semantic informa-
tion. At that time, the attention can show its power to learn the

different weights or utilization of different message from each type
of network.

6 APPLICATION ON E-COMMERCE SEARCH
E-commerce network construction. Our new framework is also
correctly suitable for the search scene in some e-commerce plat-
forms. To be specific, in an e-commerce search scene, the queries
and items which are from users and online shops respectively could
constitute a natural bi-typed heterogeneous network (e.g., in Figure
2). Learning node embedding from this network is helpful to give
an accurate estimation of relevance between each pair of query and
item, such that it can optimize the follow-up ranking results. From
JD.com, we build such a network where a total of 6.5M queries and
50M items covering all categories existed as the real nodes. In con-
sideration of the product and attribute phrases playing important
roles in the e-commerce corpus, we extract 60K product phrases
and 12K attribute phrases from JD’s database to act as the entity
nodes in the network. Some representative examples from this built
network are shown in Fig. 3. The red edge connecting a pair of
real nodes generated via integrating the original user purchase
behaviors and BERT-refined user click behaviors, while the yellow
edge from an entity node to another is selected via retrieving the
most co-occurrence phrase.

Baseline algorithms. We compare our models with two types
of baseline algorithms which are classical deep text matching mod-
els and emerging graph neural network (GNN) models for the
searching problem. The former usually adopts a representation-
based or interaction-based matching pattern to calculate a rele-
vance score between two pieces of texts. The latter leverages neural
network architectures (i.e., graph convolution layer with or with-
out graph attention layer), to deal with network-structure data.. A
brief introduction to these related methods and BiTe-GCN models
is proviuded as below:

• MV-LSTM [28]: It is a representation-based method, which
uses Bi-LSTM architecture to learn two sentences’ separate
embedding with contextual information.

• ARC-I [5]: It is a representation-based method, which cap-
tures two sentences’ different-level matching signals with
the Siamese CNN architecture.

• ARC-II [5]: As an enhanced version of ARC-I, it is interaction-
based, and directly models the interaction space of two sen-
tences with a single group of CNNs, which is different from
the Siamese architecture in ARC-I.
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Figure 3: An example of the augmented network in a real e-commerce search scene. The edges between two real nodes, two en-
tity nodes, one real node and one entity node are generated via the relationships of user behavior, co-occurrence and inclusion,
respectively.

• K-NRM [30]: It is an interaction-based method, using the
kernel-based technique to learn multi-level matching signals.

• MatchPyramid [20]: It underlines the similarity of text
match and image recognition, and thus designs a hierar-
chical CNN’s structure to deal with the text match problem.

• DUET [19]: It is a combination method of the representation-
based model and interaction-based model.

• HG4SM [14]: It contains HG4SM-1 (representation-based
embedding), HG4SM-2 (interaction-based embedding) and
HG4SM-3 (metapath-guided heterogeneous network embed-
ding) to solve the relevance match problem. We compare our
model with all its three versions.

• GCN [8],GAT [26], BiTe-GCN-Refine, BiTe-GCN-Refine-
Attention: As introduced in Section 4.2.

Metrics. Six kinds of metrics are introduced to fully evaluate the
above models’ performance. These metrics are widely used in ma-
chine learning, including AUC (Area Under the receiver operating
characteristic Curve), Accuracy, Precision, Recall, F1-score and FNR
(False Negative Rate). It is worth mentioning that we mainly focus
on the result of AUC in the JD search relevance scene.

Experimental setup and result analysis. For simplicity, each
real or entity node’s embedding is achieved by calculating the aver-
age of word embeddings, which are initialized by the pre-trained
results on 2 billion e-commerce corpus. We use the Lazy-Adam
optimizer with a learning rate of 1.0e-3. For BiTe-GCN-R-A model,
we set 4-head attention calculation for the aggregation of node em-
bedding and meta-path embedding. Based on 39K human-labeled
evaluation dataset, we select the best model and report its results in
Table 4 corresponding to the maximum AUC value within 3 epochs.

For the results, on the one hand, the GNN-type methods are
superior to all of compared deep text match method such as MV-
LSTM and MatchPyramid, which benefits by the extra refinement
of the rich local neighbor information. On the other hand, by dis-
entangling the real nodes and entity nodes from the heterogeneous
network and afterward building up two convolution operations

on homogeneous nodes and heterogeneous nodes, our models
BiTe-GCN-R and BiTe-GCN-R-A also outperform the two classical
GNN models (i.e., GCN and GAT) in all the test sets.

7 RELATEDWORK
Graph convolutional networks (GCNs) aim to extract high-level
features from nodes and their neighborhoods by using the prop-
agation and aggregation mechanisms. However, a key issue with
GCNs is their topological limitations (i.e., over-smoothing and local
homophily of topology). Existing methods for solving these topolog-
ical limitations can be mainly divided into four categories, topology
optimization methods, self-supervised methods, skip connection
methods and attention-based methods.

Topology Optimization Methods. There are several studies
that adopt the idea of topology optimization to improve GCNs. For
example, DropEdge [22] proposes to reduce the message passing
by randomly deleting a certain number of edges from the input
network in order to alleviate the topological limitations of GCNs.
MRFasGCN [7] makes a community knowledge-based MRF as a
layer of convolution of GCN to relieve its topological limitations.
TO-GCN [35] refines network topology by employing the given la-
bels as the pairwise constraints (must-link and cannot-link). Geom-
GCN [21] utilizes the information (discriminative structures and
long-range dependencies) in an embedding space from a network
and a bi-level aggregation scheme to relieve the impact of network
topology on GCNs performance.

Self-supervised Methods. Another distinct line for overcom-
ing the topological limitations of GCNs is to augment the original
label set by adding the high-credible labels derived from GCNs. For
example, Li et al. [10] propose a self-training approach, which first
trains GCN with given labels, and then adds the most confident
predictions for each class to label set for subsequent training of
GCN. Self-enhanced GNN [34] employs two algorithms, topology
update and training node augmentation, to improve the quality of
input data to promote the performance of GCNs. M3S [24] proposes
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Table 4: The performance of deep text match models, GNN models and our models. (*) is the dominant metric used in JD.

Models AUC(*) Accuracy Precision Recall F1-score FNR

MV-LSTM 0.8278 0.8023 0.8021 0.9873 0.8851 0.8224
K-NRM 0.8021 0.7918 0.7942 0.9854 0.8796 0.8618
ARC-I 0.7345 0.7771 0.7769 0.9975 0.8735 0.9669
ARC-II 0.7783 0.7920 0.7915 0.9915 0.8803 0.8815

MatchPyramid 0.8007 0.7946 0.7988 0.9806 0.8805 0.8336
DUET 0.8077 0.7799 0.7789 0.9980 0.8749 0.9563

HG4SM-1 0.8067 0.7978 0.8855 0.8474 0.8660 0.3697
HG4SM-2 0.8289 0.8534 0.8770 0.9421 0.9084 0.4459

HG4SM-3 0.8500 0.8592 0.8852 0.9392 0.9114 0.4110
GCN 0.8458 0.8580 0.8816 0.9425 0.9110 0.4272
GAT 0.8523 0.8539 0.8819 0.9361 0.9082 0.4234

BiTe-GCN-R 0.8564 0.8598 0.8847 0.9409 0.9119 0.4139
BiTe-GCN-R-A 0.8635 0.8601 0.8850 0.9409 0.9121 0.4129

a multi-stage training algorithm on the basis of self-training, which
first adds confident data with virtual labels to the label set, and
then applies DeepCluster on the embedding process of GCN and
constructs a novel self-checking mechanism to improve the training
of GCN. DSGCN [42] extends M3S by adopting a threshold-based
rule, that is, insert an unlabeled node if and only if its classification
margin is above the threshold, to augment the training set to ease
the topological limitations of GCNs.

Skip ConnectionMethods. The third strategy utilizes the idea
of skip connection that adaptively selects appropriate neighbor-
hoods for each node, to overcome the topological limitations of
GCNs. For instance, JKNet [33] introduces jumping knowledge net-
works, which flexibly leverages different neighborhood ranges for
each node, to enable better structure-aware representation. Fey [2]
improves JKNet by exploring a highly dynamic neighborhood ag-
gregation procedure that aggregates neighborhood representations
of different localities.

Attention-based Methods. Some work using the attention
mechanisms to allocate appropriate weights to different neighbor-
hoods in network can also be considered to solve the topological
limitations of GCNs. For example, GAT [26] introduces the atten-
tion mechanisms, which uses weights on links, to aggregate the
information of neighborhoods to refine network topology. Liu et al.
[11] propose a non-local aggregation framework with an efficient
attention-guided sorting to put the distant but informative nodes
near each other, so as to relieve the topological limitations of GCNs.
AGNN [25] adopts the method that removes all the intermediate
fully-connected layers, and replaces the propagation layers with
attention mechanisms which learn a dynamic and adaptive local
summary of the neighborhood to achieve more accurate predictions.
SPAGAN [36] designs a path-based attention that explicitly consid-
ers the influence of a sequence of nodes yielding the minimum cost,
or shortest path, between nodes and its neighborhoods, mitigating
the topology limitations of GCNs.

Though those methods improve the performance of GCNs to
some extent, they still have several essential limitations. That is,
the convolutions of these methods mainly focus on using features
for network topology, making them heavily dependent on network

structure. At the same time, most networks are text-rich, it is impor-
tant to integrate not only the global document-level information,
but also the local text-sequence information which contains impor-
tant semantics while is often ignored by the existing methods.

Text GCN. Also of note, a Text-GCN[38] has been proposed
very recently to extend the network into words and put the whole
system under GCN architecture. However, they did not change the
architecture of GCN. Neither the word sequence semantic infor-
mation nor the heterogeneity underlined in the Bi-Typed network
was considered.

8 CONCLUSION
We propose a new GCN architecture, namely BiTe-GCN, for text-
rich networks, to overcome the topological limitations of GCNs.
This is the first time to relieve these topological limitations, includ-
ing over-smoothing and local homophily of topology, through the
convolutions of network and text in the same system. Meanwhile,
by utilizing a discriminative hierarchical convolution mechanism,
based on the concept of meta-path, we can learn the contributions
of these two parts, that is, network part and text part, automatically
aiming to the ground truth such as node classification. In addition,
we incorporate more semantic and knowledge information from
texts, not only the global document-level information, but also the
local text-sequence level information, together to convolve, making
the model more powerful.

Empirical results on several text-rich networks demonstrate that
our new architecture has a breakout improvement over the state-
of-the-arts. Meanwhile, our new architecture is also well applied to
some e-commerce search scenes (e.g., JD searching). Last but not
least, this architecture is almost orthogonal to many existing GCN
methods and thus can be readily incorporated to further improve
their performance.
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